Uncovering low-dimensional, miR-based signatures of acute myeloid and lymphoblastic leukemias with a machine-learning-driven network approach.
نویسندگان
چکیده
Complex phenotypic differences among different acute leukemias cannot be fully captured by analyzing the expression levels of one single molecule, such as a miR, at a time, but requires systematic analysis of large sets of miRs. While a popular approach for analysis of such datasets is principal component analysis (PCA), this method is not designed to optimally discriminate different phenotypes. Moreover, PCA and other low-dimensional representation methods yield linear or non-linear combinations of all measured miRs. Global human miR expression was measured in AML, B-ALL, and TALL cell lines and patient RNA samples. By systematically applying support vector machines to all measured miRs taken in dyad and triad groups, we built miR networks using cell line data and validated our findings with primary patient samples. All the coordinately transcribed members of the miR-23a cluster (which includes also miR-24 and miR-27a), known to function as tumor suppressors of acute leukemias, appeared in the AML, B-ALL and T-ALL centric networks. Subsequent qRT-PCR analysis showed that the most connected miR in the B-ALL-centric network, miR-708, is highly and specifically expressed in B-ALLs, suggesting that miR-708 might serve as a biomarker for B-ALL. This approach is systematic, quantitative, scalable, and unbiased. Rather than a single signature, our approach yields a network of signatures reflecting the redundant nature of biological signaling pathways. The network representation allows for visual analysis of all signatures by an expert and for future integration of additional information. Furthermore, each signature involves only small sets of miRs, such as dyads and triads, which are well suited for in depth validation through laboratory experiments. In particular, loss-and gain-of-function assays designed to drive changes in leukemia cell survival, proliferation and differentiation will benefit from the identification of multi-miR signatures that characterize leukemia subtypes and their normal counterpart cells of origin.
منابع مشابه
Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملExploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach
Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...
متن کاملThe role of microRNA in acute/chronic, myeloid/lymphocytic leukemia
MicroRNAs are small, non-coding sequences that regulate gene expression by inducing degradation or translational inhibition of target mRNAs. These molecules control many intracellular physiological and pathological processes.Abnormal expression of these moleculs has been described in different cancers including hematopoietic cancers. According to the type of cancer and the stage, miRNA’s expres...
متن کاملCirculating miR-92a, miR-143 and miR-342 in Plasma are Novel Potential Biomarkers for Acute Myeloid Leukemia
MicroRNAs (miRNAs) are small non-coding RNAs that function as post-transcriptional gene expression regulators. The expression profiling of miRNAs has already entered into cancer clinics as diagnostic and prognostic biomarkers to assess tumor initiation, progression and response to treatment in cancer patients. Recent Studies opened the way for the use of circulating miRNAs as non-invasive diagn...
متن کاملStudy of Gene Expression Signatures for the Diagnosis of Pediatric Acute Lymphoblastic Leukemia (ALL) Through Gene Expression Array Analyses
Background: Acute lymphoblastic leukemia (ALL) as the most common malignancy in children is associated with high mortality and significant relapse. Currently, the non-invasive diagnosis of pediatric ALL is a main challenge in the early detection of patients. In the present study, a systems biology approach was used through network-based analysis to identify the key candidate genes related to AL...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Convergent science physical oncology
دوره 1 2 شماره
صفحات -
تاریخ انتشار 2015